首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14364篇
  免费   1248篇
  国内免费   473篇
电工技术   319篇
综合类   698篇
化学工业   5192篇
金属工艺   1632篇
机械仪表   450篇
建筑科学   660篇
矿业工程   394篇
能源动力   756篇
轻工业   3025篇
水利工程   119篇
石油天然气   222篇
武器工业   89篇
无线电   250篇
一般工业技术   1340篇
冶金工业   719篇
原子能技术   74篇
自动化技术   146篇
  2024年   49篇
  2023年   207篇
  2022年   342篇
  2021年   414篇
  2020年   459篇
  2019年   416篇
  2018年   429篇
  2017年   578篇
  2016年   526篇
  2015年   454篇
  2014年   772篇
  2013年   1841篇
  2012年   878篇
  2011年   993篇
  2010年   682篇
  2009年   705篇
  2008年   601篇
  2007年   798篇
  2006年   850篇
  2005年   662篇
  2004年   559篇
  2003年   451篇
  2002年   406篇
  2001年   400篇
  2000年   294篇
  1999年   264篇
  1998年   217篇
  1997年   192篇
  1996年   149篇
  1995年   112篇
  1994年   92篇
  1993年   72篇
  1992年   56篇
  1991年   45篇
  1990年   25篇
  1989年   21篇
  1988年   17篇
  1987年   6篇
  1986年   14篇
  1985年   12篇
  1984年   8篇
  1983年   6篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1959年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
61.
Abstract

Different drying methods (spray drying (SD), vacuum drying (VD), microwave vacuum drying (MVD), and infrared vacuum drying (IFVD)) were applied in order to compare the hygroscopicity behavior of chicken powders. The hygroscopicity curves and glass transition temperature were used to evaluate the influence of ambient humidity and temperature on moisture absorption of powders. The results showed that the chicken powder dried by MVD had the lowest moisture absorption, followed by IFVD, VD, and SD. The hygroscopicity of SD chicken powders was different from other three kinds of chicken powders due to the physical properties of particles and the changes of protein secondary structure as detected by the Fourier transform-infrared spectrometer. For the three vacuum drying methods, the difference of protein secondary structure was the main reason of differences in hygroscopicity. Although MVD chicken powders were slightly inferior to SD chicken powders in taste, MVD chicken powders were the best in terms of smell and color as suggested by instrumental sensory parameter evaluations. It was found that MVD had a positive effect on reducing moisture absorption and maintaining sensory quality of chicken powders.  相似文献   
62.
《Ceramics International》2020,46(3):2670-2676
In this study, the effect of Fe content on the abrasion behavior of TiC–Fe nanocomposite coatings applied on the CK45 steel substrate by air plasma spray method was investigated. For this purpose, milled TiC powder was prepared at 1, 2, 3 and 4 h milled TiC powder for 4 h was selected as the suitable sample. In the next step, a suitable sample mixture with different iron powder concentrations of 5, 10, 15, 20 and 25% was prepared by mechanical milling. The granulated mixture was applied to the substrate using air plasma spray technique. Microstructural and phase analyzes were performed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). According to the results of Williamson-Hall calculations, the TiC crystallites' size decreased by 49 nm–29 nm, and network strain reached 0.16% by increasing milling time from 1 h to 4 h. Studies have shown that the coatings contain titanium carbide, iron oxide, and titanium oxide, with the number of phases formed depending on the amount of iron in the chemical composition. Investigation of the tribological properties of the coating layer showed that with increased iron content in the coating, the wear resistance of the samples is reduced. Hardness tests on coatings indicate that adding iron to nanocomposite from 5 to 25% reduces hardness from 1025 to 699 Hv. It can be argued that a slight increase in the adhesion strength of the coating to the substrate is due to increased wettability because of the formation of molten iron in the coating.  相似文献   
63.
Large and nondeforming Nd: YAG ceramic prepared by wet forming is of great importance as gain medium to obtain high-power solid-state lasers. However, it is difficult to achieve high-quality laser ceramics due to insufficiency of the in-depth understanding of transformation mechanism of gels viscoelasticity and effective control means during drying process. In this work, the rheological behaviors, viscoelastic characteristics, and mechanical strengths in classical acrylamide (AM) and novel Isobam (PIBM) gelcastings were systematically compared to explore the suitable route for the large-sized 2% Nd: YAG transparent ceramics with high aspect ratio (>10). AM system exhibited a higher complex viscosity (1.82 × 105 Pa s), a shorter gel time (92.9 seconds), and a higher flexural strength (about 24.46 MPa) than PIBM system, and especially its ability to quickly gel was beneficial to the homogeneity of green body. In addition, the order of drying rates of wet gels in four drying media was observed as follows: 55℃ hot air> ethanol> solid desiccant> PEG-11000 and the moisture diffusion coefficients were calculated and simulated to offer the deep consideration of drying kinetics. The “ethanol + 55℃ hot air” was regarded as an effective composite drying method to eliminate defect and to achieve φ8 mm × 160 mm Nd: YAG ceramic with the in-line transmittance of 83% @1064 nm. Therefore, not only the cognition of gel process, but also the defects control strategy is proposed. More importantly, this work greatly promotes the application of wet forming and laser ceramics in high-power lasers.  相似文献   
64.
肯尼亚斯瓦克大坝项目位于肯尼亚东南部,是通过修建一座混凝土面板堆石坝蓄水,开发河水资源用以供水、发电和灌溉多功能一体化的工程。苏州中材建设有限公司负责施工的溢洪道土石方开挖,涉及溢洪道两边边坡支护技术。文章详细介绍了该工程的边坡支护施工过程,提出了其施工质量保证措施和支护工程质量通病处理工艺及措施。  相似文献   
65.
Recycled high-strength aluminum alloys have limited use as structural materials due to poor mechanical properties. Spray forming remelting followed by hot extrusion is a promising route for reprocessing 7xxx alloys. The 7050 alloy machining chips were spray formed, hot extruded, rotary swaged and heat-treated in order to improve mechanical properties. Microstructures, tensile properties and fatigue strength results for a 2.7 mm-diameter recycled wire are presented. Secondary phases and precipitates were investigated by XRD, SEM, EBSD, TEM and DSC. As-swaged and heat-treated (solution and aging) conditions were evaluated. Mechanical properties of both conditions outperformed AA7050 aerospace specification. Substantial grain refinement resulted from the extensive plastic deformation imposed by rotary swaging. Refined micrometric and sub-micrometric Al grains, as well as coarse and fine intermetallic precipitates were observed. Subsequent solution treatment resulted in a homogeneous, recrystallized and equiaxed microstructure with grain size of 9 μm. Nanoscale GP(I) zones and η′ phase precipitates formed after aging at 120 °C, imparting higher tensile (586 MPa) and fatigue (198 MPa) strengths.  相似文献   
66.
《云南化工》2020,(2):42-44
以水玻璃和双氧水为原料一步合成二氧化硅湿凝胶,经老化、溶剂置换及三甲基氯硅烷修饰后,并于常压干燥后获得二氧化硅气凝胶。样品经低温N_2吸附-脱附、红外光谱和扫描电镜测试表明所得二氧化硅气凝胶具有三维多孔结构,且其比表面积可达482 m~2·g~(-1)、平均孔径为24.9nm及表观密度为0.12g·cm~(-3)。  相似文献   
67.
Maize is an important foodstuff in many countries, and one of most susceptible crops to mold and aflatoxin contamination, which results in considerable postharvest losses and is a burden to consumers’ health, especially in developing countries. The timely drying of harvested maize is essential to halt mold development, ensuring safe storage. The effect of the incorporation of a superabsorbent polymer (SAP) as desiccant in a maize dryer was studied using computational fluid dynamics simulations which accounted for heat and mass transfer between maize, SAP and air. The adsorption capacity and adsorption rate of a commercial SAP material were experimentally determined at different temperature and relative humidity levels, which served as basis for the adsorption model required in the simulations. A maize bulk with SAP packages distributed in it was modeled. Results showed that the SAP material increases the drying rate substantially, particularly in the upper bulk zone where the air reaching it is dehumidified the most. The maize closer to the upper bulk surface starts drying from the beginning of the process instead of lagging for hours or days before the drying front reaches it. An inconvenience of the SAP material is the tendency of granules to swell and stick together as moisture reaches a threshold, which may reduce its performance. Thus, provided this issue is resolved or minimized, SAP materials could successfully assist the rapid drying of maize and other crops. They may also be used during storage to avoid rewetting of the crops during periods of high relative humidity.  相似文献   
68.
介绍了秦山核电基地在放射性废物最小化方面的实践。包括建立了蒸汽发生器排污树脂和通风过滤器金属框架清洁解控工作流程;改进了水泥固化线工艺,水泥固化包装容器采用金属桶代替水泥桶;开发了废过滤器芯子暂存衰变法分类处理及一桶装多芯方案;开发了技术废物“三明治”式废物装桶和超级压实提高外包装容器效率等最小化实践。对废液、废树脂、技术废物、有机废液等处理技术进行了比较分析,建议采用废液蒸干压实技术、废树脂蒸汽重整技术、可燃废物和有机废液焚烧技术,预计秦山核电基地废物产生量可由541 m3/a减至约94 m3/a。  相似文献   
69.
Salt spray corrosion test was carried out on 6061 aluminum alloy, and quasi-static tensile test at room temperature was carried out on the sample with universal testing machine. The effect of salt spray corrosion on the mechanical properties of 6061 aluminum alloy was studied by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and electrochemistry. The corrosion rate of 6061 aluminum alloy was quantitatively characterized by different corrosion parameters. It was found that local corrosion of 6061 aluminum alloy occurred in salt spray environment, mainly pitting corrosion and intergranular corrosion. With the increase of corrosion time, the polarization resistance of 6061 aluminum alloy decreases, and the corrosion rate significantly increases. The average corrosion rate and the maximum corrosion rate of 6061 aluminum alloy were characterized by corrosion weight loss and corrosion pit depth. And they can be transformed into each other. The mechanical properties of 6061 aluminum alloy were mainly affected by the depth of corrosion pit. With the increase of corrosion time, the tensile strength and fracture strain decreased, resulting in poor plasticity of the sample. At the same time, the change of elongation of 6061 aluminum alloy can be accurately predicted by the depth of corrosion pit.  相似文献   
70.
The drying kinetics of poplar lumber was experimentally investigated as a function of drying temperature (115, 135, 160, 185 and 205°C) during a periodic hot-press-drying process. Poplar lumber was dried under contact (compression ratio of 10%) and high-press states (compression ratio of 44%). Compared with the contact-state, the high-press-state showed higher drying rate and higher efficiency of removing free water than bound water in wood. Eight mathematical models from the literature were established to analyze the drying behavior. The Weibull model, with an average determination coefficient R2 of 0.9958, fitted well for all applied drying conditions. The scale parameter decreased with increasing drying temperature and was lower for high-press-state drying compared with that for contact-state drying. Moisture diffusivity and activation energy were calculated according to the Weibull model. Diffusivity increased with increasing drying temperature, with the average value of 1.734?×?10?6 and 3.313?×?10?6?m2/s and activation energy of 34.79 and 32.85?kJ/mol for contact-state drying and high-press-state drying, respectively. Hot-press drying created an M-shaped curve of density distribution, with high density at the two surface regions gradually decreasing toward the core region. The contact state-dried wood showed increased density near the wood surface. Both average density and peak density improved in the case of high-press-state-dried wood. Furthermore, the hydrophilic index of wood for high-press-state drying was lower than that of the contact-state drying, and the opposite was true regarding crystallinity index. The hygroscopicity of high-press-dried poplar decreased with lower equilibrium moisture content and higher moisture excluding efficiency, compared with contact-state-dried poplar. The rapid, high-quality drying of poplar lumber through periodic hot-press was more potentially achieved by the high-press-state compared with contact-state drying.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号